Pluto motion from image 1 to image 13: image 1: x1 = 346 y1 = 220 image 13: x2 = 352 y2 = 217 dx = 6 pixels * 1.117"/pixel = 6.702" dy = 3 pixels * 1.074"/pixel = 3.222" dr = 7.436" dt = 12 frames = 7200 sec --> 5.007e-9 rad/sec From this, determine how far from Sun Pluto orbits. acceleration = (G*M_Sun)/r^2 = v^2/r At opposition, the difference between Earth's, Pluto's velocity determines the angular motion: d(theta)/dt = (v_Earth - v_Pluto)/(r_Pluto - r_Earth) let r_Pluto = a*r_Earth d(theta)/dt = (v_Earth - sqrt(G*M_Sun/r_Pluto)) / (r_Earth*(a-1)) = (v_Earth - sqrt(G*M_Sun/(a*r_Earth)) / (r_Earth*(a-1)) = (v_Earth - v_Earth/sqrt(a)) / (r_Earth*(a-1)) = (v_Earth / r_Earth) * (1-1/sqrt(a)) / (a-1) let b = d(theta)/dt * r_Earth / v_Earth = d(theta)/dt * r_Earth / (2*pi*r_Earth / T_Earth) = d(theta)/dt * T_Earth / (2*pi) (Eq. 1) Measured value: b = 0.02513 (1-1/sqrt(a)) / (a-1) = b (Eq. 2) (sqrt(a) - 1) / (sqrt(a) (sqrt(a)+1) (sqrt(a)-1)) = b drop a=1 solution, a + sqrt(a) - 1/b = 0 keeping only sqrt(a)>0 solution (assuming b>0), sqrt(a) = -1/2 + (1/2)sqrt(1 + 4/b) a = (1/4) (sqrt(1 + 4/b) - 1)^2 ---> a = 33.96 au Actual value for Pluto: a = 31.85 in 2010 (actually it varies a lot since the orbit is elliptical, but this is the current distance-- Observer's Handbook 2010) :)