Ceres motion from frame 2-600: dx = 11 pixels * 1.117"/pixel = 12.2870" dy = 2 pixels *1.074"/pixel = 2.1480" dr = 12.4733" dt = 2:52:28am - 2:29:26am = 1382 sec --> 4.3757e-8 rad/sec From this, determine how far from Sun Ceres orbits. acceleration = (G*M_Sun)/r^2 = v^2/r At opposition, the difference between Earth's, Ceres's velocity determines the angular motion: d(theta)/dt = (v_Earth - v_Ceres)/(r_Ceres - r_Earth) let r_Ceres = a*r_Earth d(theta)/dt = (v_Earth - sqrt(G*M_Sun/r_Ceres)) / (r_Earth*(a-1)) = (v_Earth - sqrt(G*M_Sun/(a*r_Earth)) / (r_Earth*(a-1)) = (v_Earth - v_Earth/sqrt(a)) / (r_Earth*(a-1)) = (v_Earth / r_Earth) * (1-1/sqrt(a)) / (a-1) let b = d(theta)/dt * r_Earth / v_Earth = d(theta)/dt * r_Earth / (2*pi*r_Earth / T_Earth) = d(theta)/dt * T_Earth / (2*pi) (Eq. 1) Measured value: b = 0.21962 (1-1/sqrt(a)) / (a-1) = b (Eq. 2) (sqrt(a) - 1) / (sqrt(a) (sqrt(a)+1) (sqrt(a)-1)) = b drop a=1 solution, a + sqrt(a) - 1/b = 0 keeping only sqrt(a)>0 solution (assuming b>0), sqrt(a) = -1/2 + (1/2)sqrt(1 + 4/b) a = (1/4) (sqrt(1 + 4/b) - 1)^2 ---> a = 2.862 Actual value for Ceres: a = 2.765349 (Observer's Handbook 2010) :)