Introduction to signal and noise in Astronomy CCD cameras

Charlie Santori

Aug. 24, 2012

Outline

- 1. Introduction to CCDs
- 2. Signal and noise in CCDs
- 3. Comparison of a few CCD cameras

Electronic detectors used in astronomy

- Single-element detectors:
 - Photodiodes
 - Photomultiplier tubes (PMT)
 - Avalanche photodiodes (APD)
- Imaging detectors
 - Vidicon
 - Charge-coupled device (CCD)
 - Intensified CCD (ICCD)
 - Electron multiplication CCD (EMCCD)
 - CMOS

Best signal-to-noise ratio for long exposures: CCDs!

What happens in a CCD

- •Light incident on a pixel is absorbed in a photodiode region of a semiconductor, creating electron-hole pairs
- •The electrons are captured in a storage region ("well")
- •Readout follows a "bucket brigade" process
- •Charge eventually reaches an amplifier, where it is measured

(Hamamatsu)

Types of CCDs

Pixel type

- Front-illuminated
- •Back-illuminated
- Microlens
- Monochrome / Color

Readout Architecture

- •Full frame
- •Frame transfer
- •Interline

Features expected in astronomy CCDs

Good:

- Efficient light response
- Low noise → quantum-limited detection for > 100 photons
- Linear response
- Decent dynamic range (up to 16 bits)
- Access to raw data

Bad:

- Expensive
- Power hungry
- Heavy/bulky
- Blooming, smear (in some CCDs)
- Less "user friendly"

Signal and noise in CCDs

Introducing photons

- •Light is "quantized" into energy units $h*c/\lambda = 3.6 \times 10^{-19}$ Joules at 555nm
- •Natural unit for discussing noise in electronic detectors
- •Photon rates for some common light sources:
 - -Green laser pointer: 10¹⁶ photons / sec
 - -Sirius (through 6mm pupil): 10⁶ photons/sec
 - -Mag 6 star (through 6mm pupil): 1000 photons/sec

<u>Approximate magnitude → photon rate conversion:</u>

Visible photons/sec/m² $\approx 10^{(10.0-0.4*\text{Mv})}$

Quantum efficiency

For CCDs, QE = #electrons / #incident photons

QE values can range from 20% to 95% depending on CCD, wavelength

For astronomy CCDs, QE curves should be given by the manufacturer!

Examples:

(Princeton Instruments)

Photon shot noise

- •In most situations, photons arrive independently (Poisson process)
- •Uncertainty (standard deviation) in photon number = square root of mean
- •Example: if you <u>detect</u> 10,000 photons, noise = 100 photons = 1% (actually achieving 1% pixel-to-pixel variation will probably require flat field correction)
- •Shot noise is intrinsic to the light field, and unavoidable
- •Goal for any detector: to have shot noise be the dominant noise source

Shot noise demonstration

Using ST-4000XC camera

Solid squares: temporal variation only

Empty circles: includes temporal plus spatial variation

Readout noise

- Noise associated with amplifier used to detect electronic charge from pixels
- •Should be <10 electrons for a good astronomical CCD
- Typically, readout noise increases with readout speed
- •For N exposures, total readout noise increases by VN
- Should be specified by manufacturer

Dark current

- •Electrons slowly accumulate in pixels even in absence of light
- •Strongly dependent on semiconductor defect density, and temperature
- Mean dark contribution (and resulting fixed pattern noise) eliminated by subtracting dark frames
- •Associated shot noise contribution remains after subtraction (with additional penalty if only a single dark frame is used)
- Varies greatly between cameras
 - -Research grade CCDs with 3-stage coolers: negligible dark current
 - -Mid-range CCDs with 1-stage cooler: dark current is small enough using dark frames
 - -Uncooled CCDs: dark noise makes a significant contribution

Dark current example

Using ST-4000XC camera

Dark current example (2)

Signal/Noise summary

$$Signal = \eta r_{star} T$$

Noise =
$$\sqrt{(\eta r_{\text{star}} + \eta r_{\text{sky}} + d)T + n_{\text{exp}}\sigma^2}$$

 η = combined quantum efficiency (telescope and camera)

 $r_{\rm star}$ = incoming photon rate from star

 $r_{\rm sky}$ = incoming photon rate from sky glow

d = dark count rate

T = exposure time

 n_{exp} = number of exposures

 σ = readout noise amplitude per exposure

Requirement to detect a star: Signal/Noise ~ 3 (?)

Limiting star magnitudes

Estimated for 8", f/6 Newtonian with ST-4000XC single-shot color camera

Varying:

- Sky brightness
- •Seeing
- Cooled/uncooled
- Exposure time

Useful link: http://www.nature1st.net/bogan/astro/optics/ccdlimit.html

Comparing a few cameras

Orion Starshoot Deep Space Color Imaging Camera

Good

- Relatively inexpensive
- Lightweight
- Powered by USB alone (without cooling)

<u>Bad</u>

- Small CCD (752x582)
- Open-loop TE cooler
- Critical specifications not given
- Excessive readout noise, sometimes with patterns
- Colors can separate for short exposures

SBIG ST-4000XC

<u>Good</u>

- Relatively large CCD (2048x2048)
- Low noise
- Second CCD for self guiding
- Closed-loop cooler
- Includes mechanical shutter

<u>Bad</u>

- Big and heavy need to rebalance mount
- Clunky power adapters, cable management
- Expensive
- Modest QE

SBIG ST-8300

Good

- Relatively large CCD (3326x2504)
- Low noise
- Closed-loop cooler
- Includes mechanical shutter

<u>Bad</u>

Modest QE

Specification comparison

	Orion DSCI	SBIG ST-8300	SBIG ST-4000-XC	PI Pixis 2048B
CCD chip	Sony ICX259AK	Kodak KAF- 8300	Kodak KAI- 4022C	E2v CCD42-40
Max. quantum efficiency	?	57%	46%, 42%, 34%	97%
Readout noise (e)	?	9.3	7.9	3.5
Dark current (e/pixel/sec)	?	0.02	~0.02*	0.005
Cooling	1 stage*	1 stage	1 stage	3 stage
Mech. shutter?	no	yes	yes	no
Color filters	CMYG	mono	RGGB	mono
Pixel size	6.5 x 6.25 μm	5.4 μm	7.4 μm	13.5 x 13.5 μm
Self-guiding?	no	no	yes	no
# Pixels	752x582	3326 x 2504	2048 x 2048	2048 x 2048
Price	\$250	\$2000	\$3000	~\$30000
pixels/\$	1750	4160	1400	140

Summary

- Astronomy CCDs come in a wide range of price and performance levels
- Good astronomy CCDs have high quantum efficiency and low dark current, and cost a lot
- The relative advantage depends heavily on the observing site (sky glow) and telescope focal ratio